Мобильная версия

Стабилизаторы напряжения

Сеть и Подключение

Централизованное подключение стабилизатора
Подключение мощного стабилизатора сразу после домового или квартирного счетчика электроэнергии.

Нейтральный (нулевой) проводник
Общая точка соединенных в звезду фазных обмоток (элементов) электрооборудования. Провод, подключенный к этой точке, также называется нейтралью.

Фазное напряжение
Напряжение между фазой и нейтралью (нулем). По отношению к нулю на всех трёх фазах напряжение 220 В и называется фазным. Оно действует между любой из трёх фаз и нейтралью (нулём).

 

 

 

 

 

 

Фаза
Проводник, находящийся под напряжением относительно другого, общего проводника земли и нейтрали; (нуля), соединенного с массой, корпусом электротехнического устройства (электрогенератора, электрического трансформатора и др.)

Однофазное подключение
Подключение стабилизатора к одной фазе 220 В и нулю.

Линейное напряжение
Напряжение 380 В, действующее в трехфазной сети между любыми из трёх фаз, называется линейным.

Перекос фаз
При  трехфазном напряжении существуют три фазных напряжения по 220 В. Однофазных потребителей можно подключать к любой фазе и нулю. Это делается так, чтобы потребление по каждой фазе было примерно одинаковым, иначе возможен перекос фаз.

Реле напряжения, блок контроля фаз
Реле, которое в случае перекоса фаз автоматически переключает нагрузку на незагруженную фазу.

«Жёсткая» фазировка
В однофазной сети обязательное подключение прибора конкретным проводником к фазе источника тока.

Автоматическая фазировка на выходе
Привязка фазы к конкретному проводнику на выходе стабилизатора вне зависимости от того, сделана ли «жёсткая» фазировка при подключении стабилизатора к источнику тока или нет.

Заземление («Земля»)
“Защитное заземление” защищает человеческое тело от того, чтобы на нем не появилось опасное напряжение, и через человека не пошёл электрический ток. Например, в случае случайного присоединения фазового проводника к токопроводящему заземленному корпусу прибора образующийся потенциал приведет к срабатыванию вводного автомата защиты и отключению электропитания. 

Байпас
Автоматический или ручной переключатель, позволяющий в случае аварии стабилизатора или ИБП осуществить питание нагрузки напрямую от сети.

Качество электроэнергии, 7 категорий проблем электропитания, перепад (скачок, всплеск) напряжения
Для однозначного определения проблем электропитания были введены международные стандарты IEEE Standard 1159-1995 и IEEE Standard 1100-1999, которые их классифицировали и исключили разночтения. Таким образом, появилось 7 категорий проблем электропитания, определяющие качество сети:

  1.  Переходные процессы
    1. Импульсные процессы – удар молнии, неисправность заземления, электростатический разряд и т.п. Основной способ борьбы – устройство антистатического заземления.
    2. Колебательные  процессы – многократные отклонения значения величины напряжения и тока связанные с отключением реактивной или индуктивной нагрузки (например мощный электродвигатель). Если двигатель отключить, то до своей остановки он сам станет дополнительным питающим генератором электроэнергии, подключенным к системе электропитания и значительно изменяющим ее параметры.
  2. Перебои – полное отсутствие электропитания от 0,5 периодов до 2 минут. 
  3.  Провалы напряжения (просадки напряжения). Это кратковременное (до 1 минуты) уменьшение амплитуды напряжения, связанное с включением мощных нагрузок.
  4. Всплески напряжения (перенапряжения). Антипод просадки, явление, при котором в сети действует повышенное напряжение. Возникают при массовом отключении потребителей от сети, рассчитанной на высокую нагрузку.
  5. Искажения синусоидальной формы напряжения. Отсутствие чистой синусоиды напряжения приводит к мерцанию света, перегреву сердечников трансформаторов, что ведет к снижению мощности, передаваемой в нагрузку. Так же могут быть помехи связи, зависание компьютеров, порча мониторов и жестких дисков.
  6. Флуктуации напряжения. Флуктуация напряжения возникает при подключении нагрузки с нестабильным потреблением тока. Напряжение сети «плавает» в приделах 95-105%.
  7. Вариации частоты. Нарушение частоты напряжения электропитания может возникать при подключении автономных генераторов при высокой нагрузке на них. Вариации частоты приводят к нестабильной работе электродвигателей, их перегреву, шумности и повышенному износу.

Синусоидальная форма напряжения, “чистая” синусоида
В генераторах переменного тока получают ЭДС (электродвижущую силу), изменяющуюся во времени по закону синуса, что позволяет производить точный расчет электрических цепей, где все токи и напряжения являются синусоидальными функциями времени. Синусоидальная форма напряжения («чистый» синус) говорит о высоком качестве напряжения и отсутствии 7 категорий проблем электропитания.

Выходная мощность
Выходная мощность, это мощность, которую отдает стабилизатор в подключенную нагрузку. 

Рабочий диапазон входного напряжения
Рабочий диапазон входного напряжения, это напряжение при котором стабилизатор обеспечивает заявленную мощность и номинальное выходное напряжение  в соответствии с требованиями ГОСТа - от 187 вольт до 242 вольт переменного тока. Некоторые стабилизаторы напряжения имеют расширенный диапазон входного напряжения, который может составлять от 90 до 300 вольт. 

Предельный диапазон входного напряжения
Диапазон входного напряжения, при котором стабилизатор может работать, но не обеспечивать выходную мощность и номинальное  напряжение. 

Защита

Короткое замыкание (КЗ)
Это любое незапланированное, нештатное соединение электрических проводников с разным потенциалом, например, фазы и ноля, при котором образуются разрушительные токи, несущие угрозу работоспособности оборудования и жизни человека.

Тройная защита от перегрузки
Защита по току, защита по напряжению и защита по температуре, примененная в стабилизаторах производства компании БАСТИОН.

Автоматический выключатель (автомат)
Защитный автомат произведет автоматическое отключение, если фазный провод попадает на защитный (заземляющий) проводник,  что равносильно короткому замыканию (то есть максимально возможному току в схеме), что приведет к срабатыванию  электромагнитной защиты.

Класс защиты (IP - Ingress Protection)
Международный электротехнический стандарт степени защищенности приборов от проникновения  в них частей тела, пыли, предметов, случайного контакта (первая цифра от 0 до 6) и влаги, воды, капель, струй и т.п. (вторая цифра от 0 до 8)

Типы и схемы стабилизации

Быстродействие, время стабилизации, время реакции
Быстродействие  состоит из двух параметров – времени реакции на возникшие изменения во внешней питающей сети и времени стабилизации выходного напряжения прибора до значения, лежащего в диапазоне номинального напряжения.

Точность стабилизации
Точность стабилизации определяется как максимальное отклонение в % от номинального выходного напряжения стабилизатора. Чем меньше значение точности, тем лучше.

Бестрансформаторная схема
Принцип работы стабилизатора основан на регулировании выходного напряжения путем широтно-импульсной модуляции (ШИМ). На входе и на выходе прибора имеются аналоговые фильтры, эффективно сглаживающие импульсные помехи в сети. 
Принцип широтно-импульсной модуляции дает возможность корректировать выходной сигнал. Для потребителей очень важным является качество выходного напряжения, а именно обеспечение строгой синусоидальности питающего напряжения. В данном приборе корректировку осуществляет микропроцессор, который постоянно анализирует выходной сигнал и добивается его наилучшего совпадения с синусоидой. Следует отметить, что отсутствие трансформатора, снижает защищенность аппаратуры в случае отказа или экстренной ситуации в сети или с самим устройством.

Двойное преобразование напряжения
Фазоинверторный стабилизатор напряжения
Инверторный стабилизатор
Двойное преобразование напряжения (double conversion) - это преобразование входного переменного напряжения 220 вольт в постоянное, которое за тем посредством инвертора, снова преобразуется в переменное напряжения 220 вольт. По схеме двойного преобразования электроэнергии построен инверторный стабилизатор, в котором, в отличие от дискретных стабилизаторов отсутствует автотрансформатор. Данный тип стабилизаторов обеспечивает практически идеальное выходное напряжение, на качество которого практически ничто не влияет. Главным его недостатком является цена. 

Однофазный стабилизатор напряжения
Стабилизатор напряжения, имеющий однофазное подключение 220 вольт.

Трехфазный стабилизатор напряжения (трёхфазное подключение)
Простейшей схемой трёхфазного стабилизатора напряжения является подключение соответствующим образом трёх однофазных стабилизаторов и получение на выходе трёхфазного тока 380 вольт. С учетом того, что однофазные устройства редко бывают по мощности больше 15 квт, результирующая конструкция из 3-х стабилизаторов мощностью 15 кВт каждый, будет значительно меньше 60 квт, что обычно достаточно для обслуживания индивидуального жилого дома. Дополненная блоком контроля фаз и байпасом, такая система будет характеризоваться хорошей надежностью и функциональностью.

Электромеханический стабилизатор
Устройства этого класса осуществляют нормализацию параметров тока последовательной активацией или отключением витков автотрансформатора с помощью регулирующего электромеханического шагового сервопривода (электродвигателя).
Высокое качество напряжения на выходе сервоприводного устройства стабилизации реализуется за счёт плавности и равномерности нормализации с погрешностью в рамках всего 1-3%, а также отсутствия искажений токовой синусоиды.

Феррорезонансный стабилизатор
Электромагнит­ные стабилизаторы напряжения, в которых используют резонанс­ные контуры, называют феррорезонансными. Их применяют в ка­честве маломощных стабилизаторов переменного напряжения и как опорные (эталонные) источники напряжения. Чаще всего их выпол­няют на одном сердечнике из трансформаторной стали Ш-образной формы с тремя стержнями. 

Стабилизация напряжения вольтодобавочного типа
К вольтодобавочным устройствам регулируемого напряжения могут быть отнесены индукционные регуляторы, автотрансформаторы плавно регулируемого напряжения, вольтодобавочные  трансформаторы и линейные регуляторы, являющиеся наиболее приемлемыми аппаратами для регулирования напряжения в распределительных сетях потребителей.

Дискретное (ступенчатое) регулирование
Ступени регулирования
Дискретный (электронный) стабилизатор
Дискретный способ стабилизации напряжения осуществляется за счёт выбора обмотки автотрансформатора (ступени регулирования) с напряжением наиболее соответствующим номинальному и включении соответствующего силового ключа (электронного или релейного), что позволяет до минимума сократить время срабатывания ключа. Основным недостатком являются скачки выходного напряжения, сохранение искажений в выходном сигнале и небольшая точность стабилизации. Дискретные стабилизаторы отличаются небольшой ценой, надежностью и  массовостью.

Стабилизация напряжения релейного типа
Релейный стабилизатор
Дискретный стабилизатор напряжения, у которого в качестве электронных ключей переключения обмоток автотрансформатора используются электромеханические реле.

Тиристорный стабилизатор (симисторный стабилизатор)
Дискретный стабилизатор напряжения, у которого в качестве электронных ключей переключения обмоток автотрансформатора используются тиристоры (симисторы).

Конструкция и Элементная база

Автотрансформатор
Это вариант трансформатора, в котором первичная и вторичная обмотки соединены напрямую. За счёт чего у них не только магнитная связь, но и электрическая. Обмотка автотрансформатора имеет несколько выводов (как минимум 3), подключаясь к которым, можно получать разные электрические напряжения.

Микропроцессорное управление
Посредством команд микропроцессора осуществляется управление работой электронных ключей автотрансформатора.

Симисторные ключи (тиристорные ключи)
Силовые электронные элементы, позволяющие осуществлять переключение между обмотками автотрансформатора с большой силой тока.

Сервопривод
Управляющий механизм, обеспечивающий совершение определенных механических действий посредством работы электропривода.

Сальниковые вводы (гермовводы)
Отверстия с резиновыми уплотнениями, зажимаемыми накидной гайкой, обеспечивающие герметичный ввод проводов в корпус прибора.

Гальваническая развязка
Передача энергии или информационного сигнала между электрическими цепями, не имеющими непосредственного электрического контакта между ними за счет электромагнитной индукции.

Устройство сопряжения
Устройство, устраняющее проблемы с некачественным (или отсутствующим) заземлением, которые порождают  паразитные токи, наводки. Позволяет адаптировать автоматику газового котла для работы с автономными генераторами и со старыми сетями без заземления.

Нагрузка и мощность

Нагрузка (полезная нагрузка)
Приборы и оборудование, подключаемые к стабилизатору.

Номинальная нагрузка (выходная мощность)
Разрешенная производителем мощность подключаемой нагрузки, при которой стабилизатор работает без перегрузки.

Активная нагрузка  (активная мощность)
Приборы, не имеющие в своем составе катушек индуктивности и емкостей (лампы накаливания, электроплиты, утюги, обогреватели и т.п.). Для таких приборов активная и полная мощности совпадают.

Реактивная нагрузка (реактивная мощность)
Это часть энергии, которая в процессе работы электроприбора накапливается в катушках индуктивности и емкостях и не совершает полезной работы, но которая учитывается в полной мощности прибора в виде реактивной составляющей (в дополнение к активной составляющей).

Полная мощность
Сумма активной и реактивной мощности.

Перегрузочная мощность (максимальная мощность, запас мощности, перегрузочная способность, перегрузка)
Перегрузочная мощность это выходная мощность прибора, превышающая номинальную мощность и которую он может кратковременно развивать  без ущерба для своей работоспособности в период действия перегрузки. Обычно такая работа связана с появлением высоких пусковых токов подключенного оборудования в первоначальный момент накопления энергии в катушках индуктивности или емкостях. Затраченная на это мощность называется реактивной. О параметрах перегрузочной мощности (её значении и времени действия) производитель обычно информирует отдельно.

Пусковые токи оборудования (Перегрузка)
Кратковременное увеличение потребляемой мощности оборудования. Появление пусковых токов объясняется накоплением дополнительной энергии в  катушках индуктивности или емкостях в виде реактивной составляющей мощности.

Коэффициент мощности (сos(φ))    
Безразмерная физическая величина, характеризующая потребителя переменного электрического тока;с точки зрения наличия в нагрузке реактивной составляющей. Коэффициент мощности показывает, насколько сдвигается по фазе; переменный ток, протекающий через нагрузку, относительно приложенного к ней напряжения. Численно коэффициент мощности равен косинусу этого фазового сдвига.

φ =90, сos(φ)=0 - нагрузка полностью реактивная.

φ =45, сos(φ)=0.71 - нагрузка имеет реактивную и активную составляющую. 

φ =0, сos(φ)=1 - нагрузка полностью активная

Значение коэффициента мощности Высокое Хорошее Удовлетворительное Низкое Неудовлетворительное
сos(φ) 0,95…1 0,8…0,95 0,65…0,8 0,5…0,65 0…0,5

 

Корректор мощности на входе
Коррекция реактивной составляющей полной мощности потребления устройства выполняется путём включения в цепь реактивного элемента, производящего обратное действие. Например, для компенсации действия электродвигателя переменного тока, обладающего высокой индуктивной реактивной составляющей полной мощности, параллельно цепи питания включается конденсатор.

Коэффициент полезного действия (КПД)
В замкнутой электроцепи, при протекании зарядов по проводникам, осуществляется сопротивление полной и полезной нагрузки работы электричества. Их соотношение определяет коэффициент полезного действия (другими словами это отношение полезного тепла к полному). Как правило, КПД это безразмерный коэффициент от 0 до 1, чем он выше, тем эффективнее будет работать устройство и меньше будут потери электричества.

Собственная потребляемая мощность, холостой ход
Каждый стабилизатор тратит энергию на работу собственной электроники и нагрев силовых элементов даже при отсутствии полезной нагрузки (на холостом ходу). Самый простой способ оценить собственную потребляемую мощность это произвести расчёт по коэффициенту полезного действия (КПД), который обычно указан в техпаспорте. Достаточно мощность устройства умножить на процент потерь (от 100% нужно отнять значение КПД).  Так, прибору мощностью 1000Вт с КПД 97% для работы без нагрузки понадобится 30 Вт в час (100%-97%=3% и  1000Вт*3%=30Вт).

Асинхронный двигатель
Наиболее распространённый в бытовой технике двигатель переменного тока, обладающий высокими пусковыми токами. Долговечность его работы в основном зависит от качества питающего напряжения.

Форм фактор

Конвекционное (конвективное) охлаждение
Корпус прибора, выполненный по конвекционной схеме, обеспечивает безвентиляторное охлаждение силовых элементов за счет естественной циркуляции воздуха (конвекции) внутри прибора.

Навесной стабилизатор
Стабилизатор с возможностью крепления на вертикальные поверхности.

Напольный стабилизатор
Стабилизатор, устанавливаемый непосредственно на полу.

Стоечный (Rack) стабилизатор
Стабилизатор, устанавливаемый в специализированную 19 дюймовую Rack-стойку, используемую для подключения блоков различного оборудования.

Назад

Наверх